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ABSTRACT

The stability of the critical state for flexural buckling
of a plate of incompressible isotropic elastic material with

arbitrary strain-energy function is studied. Most of the analy-

carried out without restriction on the magnitude of the

aspect ratio of the plate.

sis is

However, the final result is limited

to the case when the aspect ratio is such that terms of fourth

degree in it may be neglected in comparison with terms of zero

degreet
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1. Introduction

In the present paper we consider a plate of incompressible

isotropic elastic material to be situated with its edges parallel

l to the axes of a rectangular cartesian coordinate system x . The
plate is acted on by dead-loads applied normally to the faces of
the plate which are perpendicular to the‘l and 3-axes of the system
x . The faces perpendicular to the 2-axis are force-free. The

j constraints on the 1 and 3-faces are such as to permit the plate

% to undergo pure homogeneous deformations. It is supposed that the

load in the l-direction is a thrust. As this thrust is increased

static bifurcation solutions in the 12-plane, superposed on a uni-
form extension in the 3-direction, become possible at certain
critical values. These solutions may correspond to buckling of the
plate of the flexural or barreling type. In [1,2] the compression
ratios in the 1-direction at which these critical values of the

thrust are reached was calculated for an arbitrary strain-energy

function.

In a previous paper [3] we discussed the stability of the

states of pure homogeneous deformation at which these bifurcations
occur, with the assumption that the strain-energy function is neo-
Hookean. The stability criterion emploved and the procedure adop-
| ted was. essentially that due to Koite. . An equilibrium state

‘8. 8
is regarded as stable or unstable accurc.agiy as the potential

energy of fﬁe system, consisting cf the body and loads, has a

proper minimum at this state with respect to all infinitesimal

deformations gatisfying the kinematic constraints. It was seen in

] [3] that a state of pure homogeneous strain for which a bifurcation




solution exists is one of neutral equilibrium. The state is
stable if the potential energy of the system is smaller for this
state than it is for every state in its neighborhood which satis-
fies the kinematic constraints; otherwise it is unstable.

With this criterion it was shown in {3] that at critical com-
pression ratios for flexural buckling the homogeneous state is
stable provided that the aspect ratio (2-dimension/l-dimension) is
less than about 0.2, and unstable otherwise. This implies that
the immediate post-buckling behavior will be stable for the lower
aspect ratios and of the snap-through type at the higher aspect
ratios. At critical compression ratios for buckling of the barrel-
ing type, the homogeneous state is stable for all aspect ratios.
These calculations were carried out in [3] for aspect ratios
ranging from zero to infinity. The formula on which these calcu-
lations were based is extremely complicated and acquires meaning
only as the result of the numerical computations. Accordingly,
for the case of flexural buckling an asymptotic calculation valid
for small values of the aspect ratio was also carried out. As the
aspect ratio tends to zero this result agrees with the classical
result of Euler based on the theory of the elastica.

In the present paper analogous calculations are carried out
for an incompressible isotropic elastic material with arbitrary,
rather than neo-Hookean, strain-energy function. While much of
the analysis (up to §7) is carried out with no restrictions on
the magnitude of the aspect ratio, the final result, which is given
in equation (11.25), is obtained only for the case of small aspect

ratio.




2. Statement of the problem

We consider a rectangular plate of incompressible isotropic
elastic material, which has its edges parallel to the axes of a
rectangular cartesian coordinate system x. Let £ be the vector
position, relative to the origin of the system x, of a generic
particle of the plate in its undeformed state (state 0) and let

its bounding surfaces in this state be the planes
EA = t LA (A=1,2,3) . . (2.1)

We suppose that the plate is maintained in an equilibrium
state of pure homogeneous deformation (state I), with extension

ratios Al,kz,x and principal directions parallel to the co-

3
ordinate axes, by uniformly distributed normal tractions applied

to the surfaces El = & Ll and €3 = t 23, the surfaces

52 = % Lg being force-free. Let I, and n33 be the tractiomns,

measured per unit undeformed area, applied to the faces £, = ll

1
and 53 = £3 respectively.

We assume that the surfaces initially at g, = ¢ &4 and
E3

and 3-axes respectively, but points on them are free to move in

= 3 L3 are constrained so that they move parallel to the 1

the planes normal to these directions (i.e. the tangential trac-
tions on these surfaces are assumed to be zero).
Let X be the vector position in state I of the particle

which has vector position § in state 0.

e
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®
Then,
X, = 264 (A=1,2,3), AAAy = 1. (2.2)
Now suppose that the plate undergoes a further deformation
which consists of a uniform stretch in the 3-direction and a
plane deformation in the 1Z-plane., We call the resulting state
of deformation of the plate state II, and we write
x=X+u, (2.3%)
where
u, = u,(8,,8,) » u, =uy(8,,85,) , ug = AEL,, (2.4)
and E 1is a constant.
Since the material is incompressible, detllxi a{l =1.
]
It follows with (2.2)-(2.4) that
(1+E)(Alua’2+x2u1’l+u1’1u2’2-u1’2u2.1) + AAE =0 . (2.5)
Let C = llcijll » Y ||yij|| be the Finger strain
matrices in states I and II respectively. Then, with (2.2),
Con = A28 Yii = X; X (2.6)
AB A°AB ij i,mj,m"° :
# Throughout this paper, latin subscripts take the values 1,2,3 and greek F

subscripts take the values 1,2. The Einstein summation convention applies
to lower case latin and greek subscripts but not to upper case latin sub-
scripts. Also, the operators 3/35a, 3/85m are denoted ,a and ,m
respectively.




e - .t = o —

We introduce the notation

y=C+c, c=llegll . (2.7)

From (2.4), (2.6) and (2.7), we obtain

2 - 2
¢, = (2A1+u1,1)u1,1+u1,2 » Cop (2X2+u2’2)u2’2+u2’1 , ;
= 2 = =
€33 = AJE(Z*E) , €% €5y = (Apruy JJu, (+(Ay%u, L)uy o
(2.8)
ey = 0 (i3=23,32,13,31) . : i
Let be the invariants of y and I I those of

1015 Y 1° ‘2
C defined by

_ 2 4-1,-1
Il - AiAl F] 12 Ai Ai ]
1, = tr v = I_+i 1, = 1{(tr y)z-tr 72} = I+ i (2.9)
1 i 171 2 7 1 1 2 T2 :
With the notation
A = A2/A1 s
(2.10)
k[ul = uy gug g * 2A(uy Hup 17Uy 195 5)
it follows from (2.5)-(2.9) that
i, =i, i, - A§(1+j) , (2.11)

where




[
I

= 20, (-2 %y |+ (05-A3)E} + «lul
+ (x2+2A2)52 - zx253(1+5)'1 ,

j = 5{2(x2+x -Ag-x ) + (2+E)i (2.12)

+ E(A +A2-5x3+3x )

- EZA2(44E) + AJAJ(4+3E) (1+E) T2}

Let W and w denote the strain energies per unit volume
in states I and II respectively. Then,

w=w(l W= W(Il’IE) . (2.13)

1oto)
We introduce the notation

_ oW -
Wa © 57; ’ Wag = 51&518 ’
(2.14)

Wo = Wo(Iy,15) , Wog = wyp(ly,15)

The increase in the strain-energy of the plate in passing from

state I to state II is given by*

1y s s
2L, f f (w-W)dg,dg, = 22, I I(w i,45 Woeigig

« W3 e w® L §G)hag ag, (2.15)

* The domain of integration for the double integrals is the
rectangle (-tl,ll) x(-£2,£2).




(3) .1 c s s () _ 1 C s s
w 3 w iii W T waBY510161Y15 , (2.16)
and W(s) denotes the usual Taylor series remainder.

Let nai denote the Piola-Kirchhoff stress in state I .

Then (cf.[1], equation (3.6))

- 2 2
T, = 24,223,
= _32y~1 2
Myg = 2005-A5030) (W +A0W,) | (2.17)
gi = 0 (ai #11,33)

It follows from the constraint conditions on the surfaces
51 = tzl that the displacement field u must satisfy the

conditions

ul’z(t‘alﬁgz) = 0 . (2'18)

With the further assumption that the displacements of these two

surfaces are equal and opposite, we obtain
ul(‘al’gz) = 'ul(,'zlygz) = Alezl ’ (2'19)

where e 1is a constant.

The resultant forces acting on the faces El.- tzl and
53 -:t£3 in state I are obtained from (2.17) as 1432£3n11 and
+ 421‘2“33 respectively. We suppose that state II is reached
from state I under dead-loading conditions. Then these are also
the resultant forces acting in state II. The increase in the

potential energy of these forces in the passage from state I to




[
!

state II is

-8£1£2£3(A1enll + A3EH33) . (2.20)
With (2.17) and (2.19) this may be written in the form
2 2 2,2 2
-423 I I{Al(l-k )(W1+A3W2)ul’l+(x3 Az)(wl+A1W2)E}d£1d£2. (2.21)

The increase G[u] in the total potential energy of the
system, consisting of the body and loads, resulting from the de-
formation from state I to state II is given by the sum of the
quantities in (2.15) and (2.21). With (2.11) and (2.12), G[u]

can be expressed by

Glu] = 22, f f [(wl+A§w2){K[g] + (A§+2A§)E2}

2 2 2 32, 2,88 _212y2
+ ASW, {40 (1-A%)Euy o + (AD-A3+3a1A]-3A0)E

+ 2Ex[u]}

L4
3

w3+ w®) - 232y B3(14p) 1

+

3003242020 i (ie5) + A

. a2
312 Woo(i+5)°)

+

+

2, 2. 2 _ 2 -1
AFWES{i-E[A](24e) - 2A5(1+E)

+

by 21y, w(5)
Ahs(4+3E) (1+B) 21} + WP)1ag gt . (2.22)

We shall say that the state I is stable if G[g] is positive
definite for all u lying in a neighborhood of u = 0 and

satisfying the kinematic constraints (2.5) and (2.19).
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3. Critical equilibrium states

A necessary condition for stability of state I is that the
second variation Gz[u] of G[u] %e non-negative for all
sufficiently small, kinematically admissible values of u . With

(2.10) and (2.12) it follows from (2.22) that

- 2. ,.2, 2
GQ[B] = 2£3 I I [kl{r[g] + (A3+2A2)E }
2 2 2
+ A3W2{4A1(1-A )Eu1,1+A1£ }
+ k.k2 + 2k__ A Ek + 22"w__A2E2]dc.dg (3.1)
2 21"2 322" 1952 » .
1
where
k. = W.+A%W k. = 2(W..+222W__+xMW_ ) i
1 17372 72 11 ""3712 737227 (3.2) i
= 92 2 Z
ky = 2A5(W ,*A5H,,) l
and
_ .2 2,2
k = Al(l A )ul,l+ (A3 A2)E ,
= (1242 2..2,,=2
Ay = (AT-A) (BA+AAGE (3.3)
12 324712 42942
Ay = ~(AT-A) (AF-ANF% .

The necessary condition for stability may then be written as

Gylul > ¢ (3.4) ;

for all u satisfying (2.19) and the linearized incompressi-

bility condition

A-lu + 271y +E=0 (3.5)




11. L
which is obtained from (2.5).
For any specified value of A3 , a critical value of A ,
for which a bifurcation solution of the static problem exists,
occurs when
6G2[u] =0 (3.6)

for some non-trivial displacement field u which satisfies the
boundary conditions of the problem. We shall call the state I

corresponding to such a value of A a critical state. With the

definition of stability given at the end of §2, state I will be
stable if Gz[B] is positive definite in a neighborhood of

u=0. We say that a critical state is at the stability limit

-~

if G2[u] has a zero stationary value, i.e. if Gz[u] = 0 for
a non-trivial value of u satisfying (3.6) and (3.5) together

with the boundary conditions of the problem.

In order to determine such a value of u , we proceed in the

following manner. We take account of the constraint condition
(3.5) by introducing the Lagrange multiplier -4£3p(£l,£2) and

obtain from (3.1)

8G,lul = 22, f f [k, {6k[u] + 2(A3+2)3)ESE}
2 2
+ AW, {40, (1-3%) (ESuy +u, |6E) + 2A ESE)

+ 2k2k6k + 2k (ESk+kSE)

21A2

4 2 A -1 -1
* AAJW,,AZESE - 2p(A1tsu, +AZteu, ,+SE))dE dE,,

(3.7)

where, from (2.10) and (3.3)1,




where

&, =

GK[E] = 2{[(ul’l-ku2,2)6ul+ (u2,1+}\ul,2)6u2],1
+ [(uy p-Auy )6uyt (u p*Auy 4)éuy],,
(uy 11%9y 000Uy (uy 11%up, 00)0u,0
124,292 A
kék = Al(l A°) {(“1,15“1)’1 ul,lléul}
2,12 42 2 12,2
+ A (1-A%) (A3-A5) {(Bouy ), o+ uy (8B} + (A523) ESE .
(3.8)
With (3.8) and (3.3)1, we obtain from (3.7)
£ e
8G,[u] = 444 I [6u1F11+6“2F2i]£ €,
-L 1
2
£y L,
* I [Su Fyp*du Fpp] © 48y
-2 '12
1
B I J (Fla,a6u1+F2a,a6u2-F33GE)dgld£2} 4
(3.9)
- 2,4.1242 }
By o= (koA (1A %k uy -akgu,
42 2 2 4,2 4.
+ A (L-ARE{2AW,+ (A5 A2 kth k) xllp ,
Foy = ky(uy j+Auy o), Fpp = ky(uy o*du, 4)
- ) -1
F22 = kl(uz’2 Aul,l) Az P > (3.10)
- 2,942 2
F33 = E{kl(A3+2A2) + A3A1W2
2,2 2_,2 b, 2
+ (x3 xz)[(x3 Az)k2+2A2k21] + 2A3A2W22}
42 2 2,2 .
+ Al(l A )“1,1{2A3w2+ (A3 >\2)k2 + A2k21} P .
From (2.19), 6u1 is constant on each of the faces
izl . Then, from (3.9) the condition 662 = 0 implies
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Floa ™ Fagg = 0 s I I Fo,dg dE, = 0, (3.11)
together with the boundary conditions
£2
le =0, I Flldsa = (0 on El = t zl (3.12)
-22
and
F12 = F22 = 0 on 52 = % Lz . (3.13)

Solutions of the homogeneous system of equations (3.5) and

(3.11)-(3.13) can be found of the form

-sinﬂsl cosﬂgl
u = } Ul(gg) H u2 = } U(Ee) H

1 cosQEl sinQEl
(3.14)
cosQEl
E=0, ©p-= P(E,),
sinQEl
where
Q= mr/Z!;l , n=1,2,..., (3.15)

the upper (lower) solution corresponding to n even (odd).

The functions 01(52) and P(gz) are given in terms of U by

u = 9 p=_121 (3.16)

where the prime denotes differentiation with respect to £,

and




' |
| 14.
, 1} 2 2
’ B = U -{1+(r-1)°A}Q°U , (3.17)
{
with
(A+1) %k,
A= TX_3T1— . (3.18)
U(sz) satisfies the differential equation
uV) 12241+ (a-1)2A0%0" + 2% = 0, (3.19)
and the boundary conditions
u" + 2%%U = o
on £2= t£2 . (3.20)

U"'-{22%+1+(2-1)%A30%U" = 0

Solutions of (3.19) with (3.20) have already been obtained
(see, for example, [1,2]). These are either even or odd func-
tions of £, and represent respectively flexural or barreling
deformations.

From (3.1) we obtain, with (2.10), (3.3)1, (3.10) and (3.14)3,

Gylul = 2£, I f {kyc[u] + Ai(l-xe)zkzui,l}dgldgg

= 3 -1 -1
2t f I{(uaFaB)’B UyFag,gtP(A17uy 1 *A;7u, ) HE,dE, .

(3.21)
We have, with (3.12) and (3.13),

£ 4

1 22
[ I(“aFaB)’Bdgldge = I [ugFqol ¢ dg, + f
-zl “*e -£2 1
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Then, with (3.11)1 29 (3.5), (3.14)3 and (3.22), equation (3.21)
b4
yields
62[9] =0 . (3.23)
Accordingly, for any displacement field of the form (3.14) the
critical states are states of neutral stability.

Substituting from (3.14) in (2.10)2, we obtain, with
(3.16)1,

c[u] = (222%%)~"1[(a%+1)Q%U"%+ U"2+ 22042+ 2222 Uy
+ (-1)"cos zngl{(x2+1)neu'2-u"2-A29“U2-zA292a}].(3.24)

where

(3.25)

We note that «[u] is necessarily an even function of 52 .
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4. Potential energy near a critical state

Paralleling the procedure of our previous paper [3], we
develop the stability condition that G[g] be positive definite
for all u satisfying the kinematic constraints (2.5) and (2.19)
and lying in a neighborhood of u=20.

We take

u=ed + €U, (4.1)

-~ -~

where u is the solution for u given by equations (3.14)-(3.20),
€ 1is a small parameter, and u satisfies the orthogonality con-
dition

I I ui’mui’mdgldg2 =0 . (4.2)
We then determine the value of u which, for a fixed value of
€ , gives a stationary value of G[u] . If this value of
G{u] 1is positive (negative) then the critical state is stable
(unstable).

With (3.14)3 and (2.4), we can rewrite (4.1) as

u, = gﬁa + ggﬁ; , E = ¢2F , say, (4.3)
where, from (4.2),
[ I ua’Bua,Bdgldia =0 . (4.4)

Also, since u must satisfy the incompressibility constraint

(2.5), we obtain, with (4.3) and (3.5) and the neglect of terms
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of higher degree than the first in € ,
| AT, eaZlE, = -E + A (8, .0, -4, .0, )
‘ 1 71,1 "2 72,2 3*71,272,1 "1,172,2
: voedg(uy Luy gtuy Uy otuy Uy oty Sy ). (405)
|
{ Again, since u must satisfy the constraint (2.19) on
i El = ll , WwWe have

where e is a constant.

It is shown in Appendix A that, with (4.3), G[u], given by

(2.22), may be expressed to order gh in the form (A8), thus

Glu] = G[eu+e’qd]

- 52G2[§] + 2£3e3 J I (g£3)+g£3)+€g(h))d51d52 , (4.7)

where the g's are defined in (A9). From (3.23), G2[§] = 0.
We will now show that the remaining terms on the right-hand side
of (4.7) are of order eh .

We replace u_,p,E by ﬁa,ﬁ,ﬁ = 0 in (3.10) and use the
resulting equations, together with (A3) and (A9)1, to express

gf3) in the form

(3) . - = Ay ele -1
gy 2{(uaFaB)'8 uaFaB’B-rp(Al ul’lﬂ2 uz,z)} . (4.8)

From (3.14)1 2 (3.16); and (3.25) we obtain
’
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A ~ A A = 1 ] [] _ n
ul’zue’l - ul,lu2’2 TT{(UU Y} - (-1) acosZQ&l} . (4.9)
Also, from (3.14)1 4’ (3.15), (3.24) and (4.9), we obtain
’
b 4 . & 3
f u, 148, = I u, ,xluldg, = [ (u, 1748,
'21 -4 'Ll
b, Yoo oo ..
= [ pdé;l = I p(ul’eue,l-ul,lue,z)da1 =0 . (4.10)
—Zl '£1

We now substitute from (4.5) in (4.8). From the resulting

expression for g£3) and (4.10), (3.11)-(3.13), we obtain, to

order € ,

~

(3) ) .n L
f [ g "'dE dE, = Zedg | L p(uy LU, (*u, GUy 5cUy GU, o

'“2,25i,1)d51d52 . (4.11)

Also, from the expression (A9)2 for g§3) and (4.10), we obtain

[ [ g{Pdg dg, = 0 . (4.12)
With (4.11), (4.12) and G,[d] = 0 , equation (4.7) yields
o b= y _
6lul = *a) = zeget [ [ gagyae, (4.13)

where

~ ~

= 2 (h) A A —_— FS — - - . -
g =8 * 2agp(ug Uy U, GUy ptUy U otUy Uy )

(4.14)
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5. Conditions for G to have a stationary value

In this section we shall obtain differential equations and
boundary conditions determining the field g which satisfies the
kinematic constraint (4.5) and the orthogonality constraint (4.4)
and leads to a stationary value for G . We use the method of un-
determined multipliers to remove the constraints and accordingly
write, neglecting terms of order ¢ in (4.5),

Glu] = 2L, f I {g - ZE[AI1E1,1+A;162’2+ E

-A3(ul,2u2’l-ul’lu2’2)] + qua’Bua’B}daldsz , (5.1)

where -4235 = -4133(61,52) and 4£3Y = constant are the Lagrange
multipliers associated with the constraints (4.5) and (4.4) res-

pectively., Then for 6[@] to have a stationary value,
§G[T] = 0 (5.2)

for all @ in the neighborhood of u = 0 .

~

From (5.1) we obtain, with (4.14), (A9)4, (Al) and (A3),

6G[g] = 4£3 f f (F&Bsua’8-+F33GE)dgld52
i 2 o b b _ e,
- 4£3{f [ alsuoj -£ dgy+ f EF026uu]_£ dEl
L, 1 1L, 2

- f f (FaB’BGEG-F336E)6516£2}, (5.3)

where FaB and F33 are defined by




4008

1l

2 2 2 ,2 =
'Xl(X -1){2K3W2-(A2-X3)k2+A2k21}E

2 1 ~ PN ~ _ A
-A (A -1)k2{7K[g] + ul,l(ul,l Xue,z)}

- 3,72_143 ~ 2 . =a
12x1(x 1) k3(u1,l) + Xul,l ’

Foyp = ky(uy j*Auy ) + Agpuy

|
]

12

|

22

|

33

With

and

2 A A ~
-Ay (A%-Dkyuy o (uy *Auy o)+ XUy s

= ky(uy o*Auy )+ Agpu, g

2 A A )
A (A%-Dkguy (U o+hu, 1)+ XUy 5 s

AN

A-l

= ky(u, 5-Auy 1) - Ay P-Agpuy

2- ~ ~ -A
-, (%=1 kpuy g (uy 5-Aug 4) o+ oxu, s

- 2,542 2 2 ,2,2
= {(A3+2A2)kl+A3A1W2+(A2 x3) k,

2,2 b, 2 T =

~2(A5-A3) Ak, +2AJASW, JE - D
- 2, 2w _(r2.32 =
A (AZ-1) {2050, - (AZ-A0) kA kM o

2y _ 1.2 42 1 -
AW, - FOG-A30k+ gk, Ixld]

2,42 142 Ce(x2_32 -
+22 7 (A2-1)%(k,, -6 (A2-A2) k +2 k_ }(d

1,1

T = 2,42_4742 - _ - y=1=_4 2
F {kl+xl(k 1) k2}u1,1 Akluz’a A;TP >‘3pu2’2

)2.

(5.3) and (4.6) the condition (5.2) yields

Fra,a * Foa,a © f [ F33d6,d8, = 0

£,

Fop = f Fj0d6, = 0 on &,=2£, ,
-2,

F12 - F22 = 0 on 52- :£2

I

20.

(5.4)

(5.5)

(5.6)
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These relations have the same form as (3.11)-(3.13) with FaB
replaced by FaB .
Neglecting terms of order € in the constraint (4.5), we
obtain
via, oo+ xla, = -E+ A0, Lu, .-u, .U, L) (5.7)
1 1,1 2 2,2 3v71,27°2,1 "1,172,27 ° ‘

With the expressions (5.4) for FAB and F33 and the expressions
for g and p obtained in §3, equations (5.5)-(5.7), together

with the orthogonality condition (4.4) and the additional boundary
condition (4.6), provide a set of equations for the determination

of u,»

E, e, p and ¥ .




r - - — -
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6. Development of the governing equations for u
In this section we obtain from (5.4)-(5.7) expressions for
@ analogous to those given for u in (3.14).
| We first use the expressions obtained in §3 to substitute
a for ﬁa and p in the expressions (5.4) for ?;B and F33
| - —
i and obtain the new expressions for FaB and F33 given by
3 equations (Bl)-(B3) of Appendix B.
| From (3.14), (3.15) and (4.6), we obtain
U2 U, TU,p 0 on =k, (6.1)
Accordingly, with the expressions (5.4)2 for fél, the boundary
condition (5.6)1 may be replaced by
u2’l = 0 on €l= te . (6.2)
From (5.7) and (4.9) we obtain
= = T = -1 ty ' o930
Auy Uy o*AE = (24,) T{(UU) -(-1) ecoszg,} . (6.3)

We shall assume a solution for G;, E, e, p and x of the
equations (5.5)-(5.7), (4.4) and (4.6) of the form
u, = Ulsmzm;l + AleE

1 1°?

<l

— 1 ' -5
u, = U cos2pg, + »3— UU -A (e+E)E, ,
2 1 A2 2 2 (6.4)

p =P cosZQE;1 +Q,

[}
[=]

X

’

where ﬁ, U,, P and Q are functions of €, only, and U is a
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function of 52 only determined by equations (3.19) and (3.20).

We note from (3.14) and (3.15) that expressions for E&

3 st g A 1

of the form (6.4)1 2 automatically satisfy the orthogonality con-
?
dition (4.4), the boundary condition (4.6), and the boundary con-

dition (6.2) which is equivalent to (5.6)1. By substituting from

(6.4)1 2 in (6.3) it follows that
3

| — - _130
; U1='2'1m{u'*'('ﬂ1'2L°‘}' (6.5)

where a« 1is defined in (3.25).
Introducing the expressions (Bl) for F;B given in Appendix
B into (_5.5)1 2s We obtain with (6.4)4 and (3.18) the differential

equations

2. .= - -1 — ' .
| k, ([1+(A-1) A]ul,lli-ul’zz}-xllp,l = (-1)”(¢12-zn¢n)smzasl ,
(6.6)

i kl(ia,11+ﬁa,22)'x;'5.2 = f;2+(-1)n(¢;2+29¢21)c052951 ,

where f22 and ¢a8 are defined in equations (B2) and (B3)

of Appendix B. Now, substituting in (6.6) for u, and p from

(6.4)1’2’3 we obtain

' 2 2,477 -15
k) {U7-40°[1+ (A-1)2A1T } + 201 P = (-1)"(9],-209,.) ,

T e T - BT <Y NPT T

kl(F'-m?ﬁ) -x‘zli' = (-1)"(¢;_2+zsz¢21) , (6.7)

r ? ?
kl(UU ) -2Q = 2A2f22 .

Eliminating 5 from (6.7)1 2 and using (6.5), we obtain
]

V) 1402 (2241 +(A-1)2A30" + 162200 = ™3, (6.8)




— e ———— e a————— -

24.
where
2,2
L " 427Q '
® = A3 {q + TI;._ (¢22+ZQ¢21)} ’
and (6.9)
42,0
q = p-{a"-40% 1+ (A-1)%A) + 2 (o],-200,))
2 1
It is shown in Appendix B that ¢ may be expressed in the form
given in equation (Bll).
With (6.5), equations (6.7)1 3 yield
4
D )‘lkl T 2 2,117 n
P = -——75{IP"-49 [1+(A-1)TA]JU + (-1)"q} ,
42Q
(6.10)
v 1 o '
Q = 7kl(UU ) A2f22 .
With equations (B1l) in Appendix B and (6.4)4, the boundary
conditions (5.6)3 4 yield
’
_ —_— - - n .
kl(ul’2+lu2,l) = (-1) ¢1251n2951 ,
on €2=:t£2 . (6.11)
- T __l_= - n
kl(u2,2 Aul,l) A2 P f22+( 1) ¢22cosznsl
Then, substituting from (6.4) in (6.11), we obtain, with
(6.5) and (6.10)1 ,
U + 422027 = -(-1)“x§¢1 ,
on £2 = t£2 (6.12)

- - ]
U -402(222%+ (A-1)2A30'= (-1)“A§¢2
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where
42,0
- 1 2
T aaE O e
2”3 1 (6.13)
2452 2
= _y-%r._ 2A°Q . 2
¢, A3%1q X, (a- = 9,,)}
It is shown in Appendix B that o, and ¢, may be expressed
in the forms given in equations (B14).
We also obtain on 52 = % 22,
Q = k [euu')'-a2(28 + E)]-A.f (6.14)
1'2 2 2t22 ° ’

It follows, with (6.10)2, that (6.14) is valid throughout the
body.

The relations (5.6)2 and (5.5); express the assumptions of
dead-loading in the 1 and 3 directions respectively. We sub-
stitute in them the expressions for Fll and F33 given in
equations (Bl) of Appendix B. Then, using (3.2), (3.3), (3.15),

(3.18), (6.4), (6.5), (6.9), (6.10), and (6.14)1, we obtain

a,e + aE = l3b1 , ae + a2E = l3b2 , (6.15)
where
a, = 3321 + (A-1)2 ,
.2 2 2.2 2 2y,,2_,2
T T2 DN A ATASW L (- (A5-A3) (W,
1M1
2,2 2,2
+ (Al+x3)wle+xlx3weel} R (6.16)
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. = 1 2,.,2 2
a, = ;—;5 {(3x2+x3)(wl+xlw2)
1"1
2 .2.2 2 4
+ 2(x2-x3) (wll+2xlw12+xlw22)} ,
and
(-1)™A, 2, _ -
b, = ———-E—l f 2 (0"+4220%0) "dg,,
82.Q
2 -L
A ‘2 o 2 A4
¢ I (U + 25 1+ (a-1)2] + 2
2 4, 2\ 4\Q
2 (6.17)
Ay
iy (£1,%0,1-2 5,0 ME,
L
= _A 2 N 2 -
-¢,
With the relations (6.12)1, (6.13)1 and (6.9)2, equation
(6.17)1 yields
b, = > i {u")' + ! (£f,,-2f,,)}d {5.18)
1 ZZ; EI 11" M) e, . (0.
-£
2

The expressions for bl and b2 may be rewritten in the forms

given in equations (B16) of Appendix B.

Equations (6.15) may be solved for € and E to yield

_ A - A
e = &+ (blaz-baa) , E = e (bzal-bla) , (6.19)
where A , assumed to be non-zero, is defined by
A =aa-a> . (6.20)
172

From (6.19), we obtain

A
e F = _; 2 2- A
ble + b2E 3 (azbl+alb2 2ab1b2) . (c.21)
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7. Development of the expression for G[U]

In this section the expressions obtained for U and p in

-~

§3 and the expressions obtained for g in §6 are used to write
the expression for E[g] given by (4.13) and (4.14) in terms of
the functions U(Eg) and 6(52) only. With (2.10)2, (5.4),
(5.6)1 and equations (Al), (A3) and (A9)3 in Appendix A, we can

rewrite the expression (4.14) for g as

g = (U, Fip)sp U4Fap, 8% Y%, glap E(F33*H33) + H

(7.1)
* Agp(uy Huy g-uy GUp o)
where
- - An _ 2- 1 A A A _ A
H, = >‘3pu2,2 A QA l)ka{ik[g]+ul’l(ul’l Xuz’a)}
- 3,y2_443 ~ 2
IZAl(A 1) k3(u1,1) ,
= - AA _ 2_ ~ A - A
H,, Agpuy oA (AT-Dkouy (U, 5oy ),
- AN _ 2- ) A A
Hip = A3pu, o-A  (A%-1)kpuy o (uy o*Au, o)
= AN _ 2- A ~ A 7.2
Hyy = Agpuy oo (A%-D)kjuy 4 (uy, (+duy o), (7.2)
L 2w 1424290 L1 A
Hiy {A3W2 5(A3 A3)k2+7A2k21}K[g]
2,12 142 1242 ~ 2
+ 2202-1)2(k,, -6 (A2a Dk e2n kg Ha, )P,
1 A 2 A 2 A
H = Ik2(K[g])2+12A1(A2-1)2k3(u1’1) k[4]

+ 16A§(A2-1)“kh(61’1)“ )

We now substitute in (7.2) the expressions for ﬁa and p

given in (3.14) and use (3.16), (3.18) and (3.24). Then, with

the notation introduced in equations (B4)2, (B5) and (B17) of
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Appendix B and the further notation (cf.(3.24))

e = (A2+1)20'2 + U"2 + a20%2 + 2222(UU")"' ,
1 (7.3)

<, = (\2+1)e%u'? - U2 - A2a%u2 - 22208,

e g e

the following expressions for HaB are obtained:

! PR {h. +(-1)™n..cos29E,}
; 11 4§A292 11 M 17 ' j
Hy, = E;E;i;? (hy,* (-7
H,. = -El—- {h,.+(-1)"n__cos20&.} (7.4)
33 55292 33 33 1" :
k1 n .
le = - ZTTZ§ (-1 n1251n29€l ,

n22c052951} ,

H =z - .__li;"___ (-l)nn sin2Q¢g
’
21 ZA2A293 21 1

where the h's and n's are functions of 52 only given by

h,, = 28'U" + K{Kl+z(x2+1)nzu'2} + 4(r-1)380%U'? ,

h,, = 8'U" + 22%a%y'? , (7.5)

h = Tk + (2-1)% dey'? ,
33

and

- ZB'U' + K{K2+2(A2*1)92U'2} + 4(A'1)3B920'2 .

= hyy

Ngy = Tk, * (A\2-1)23%"'? , (7.6)

i
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! 1! n 2.2
n, = B'U + AU (U"+a%2%y)
ny; = 8'U" + a%AR%U’ (U"+a%y)
We also obtain
kl n
H = 8—;175);' {ll3h+(-l) thOSZQ£1+h2COS4QEl} , (7.7
where
e 2
h = ___%___ (2K5+K§) + 2(A-1)°B 920'2(2K1+K2)
4(1°-1) A+l
+ (-1 calu't (7.8)
and
48(a+1) "k,
C =33
A A3k1

The corresponding expressions for hl and h2 will not be
required.
We now substitute from (7.1) in (4.13) and use (4.4), (5.5) and

(5.6) to obtain

Glu] = 2£, I f {ua’BHGB + EHy; + H

* AgPCEy Hly 58y gup p)1dEdE, (7.9)

Then, introducing into (7.9) the expressions (7.4) and (7.7) for
HaB and H and the expressions for G& and p given by (6.4)
and (6.5), using (4.9), and carrying out the integration with

respect to El , we obtain




42_2_% L
oy 1E1%3% 1 2., 140
G[g] = [16A2 {(-1 X2g1+g2}d€2
2 '£2

2 A, (2
1 2 = ey 3 2
-7 f (eg3+Eg))dE,* — f hda%] , (7.10)

-22 _22

where

g, = alU"' o+ 2“126" + {492a+4(A2-1)K92a + anl
- -
\ + 4n22}U + 8n21U ,
] [] ]
a + o ¢+ 4h22(UU ) -Azaq
2,2 1y',2 8X2A292f22 U
+ 42°Q°{(@UU’) }° - —= =% (UU) , (7.11)
k
l

8, % My

- 2,2 !
g3 = hll + Zh22 + 4)2°Q(Uu’) |,

= 2 2 ' ! -
g, = 2{h,, + A%a°(UU) - h, )}

22

Introducing into (7.11)3 4 the expressions (7.5) for
1]

] 11° h22, h33, we obtain

g, = 48'U" + H2%PU")" + 2(2+1)AR%UZ + Ay

+ 4(x-1)3Ba%'2 , (7.12)
g, = 2{8'U"+ 2%@%(UU") "~ T+ 22AQ%U'2

- (A2-1)2d0%"'?}

From the expressions (B7)5and (7.3) for 3' and Ky we

obtain, with (B15)1 ’




31.

w'u"y'-u"? -{1+(a2-1)A10%"'2

1
B U

"ne

= [U'@U"+2%2%0) - u{u™ -[22%+1+(A2-1)A]0% "'} (7.13)

A
[

-(A%-1)AQ%u'?

We now substitute from (7.13) in (7.12), use (B1S), and
integrate the resulting expressions for g5 and g, - Then with

relations (3.20) we obtain

l .
1 2,— = _ 2 - -
: [ (Fg+Eg))dE,= 22,00 (b E+b E) , (7.14)
-2,
where b1 and b2 are given by (Bl6).

Noting from (7.6)5, with (B7)5, that np; Mmay be written

in the form

N2y = %5'21, (7.15)
where
. = U2+ A-1)2%u'2+ax204? (7.16)
and that
o™ = (UM)'-@'T) + Q"
(7.17)
o 1) bund IV | ' '
n,,U (n12U ) -n 12U ,

we see that the expression (7.11)1 for g may be rewritten

1
in the form




— e ——— —

—————— —————
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- '
where
_ " ) 2 1 A2 -~
g1y = -0 -2n  +4{1+(A"-1)A}Q%a+2n, +dn,,-40,,
(7.19)
- ' = - o
g5 alU + (o +2n12)U + 4n21U .

The expression (7.19)Z may be rewritten (cf.(6.12)1) in the form

g, = -all"+43%2%0+ (-1)™\ 30, )

+ (a'+2n12)ﬁ'+4(x292a+521)ﬁ+(-1)“x§a¢l i (7.20)

Using (6.12)1, (6.13)1, (7.6)4, (7.16), (B11), (B13)1 and
(3.20), we obtain from (7.20)

L _ -
[ e g),dt, = [{72%+1+(A%-1)A}Q2%uu'T"

2
_ _ 2

-4@2{ (A2+1-K)u' 2-A2Ra202}0] 2
-22

130 - L

'Lz%l— Q2(722+1+(22-1)A} [UU' (U' 24220202y} 2 | (7.21)
2 )
2

In order to simplify the expression for 8140 We substi-
tute from (7.6) and (7.16) in (7.19)1 and employ (B7) and

(7.3)2 to obtain

g4, " -38(U"+220%U) + 68'U'-A{6120°UU" +4y"?

+ 20U + 3(02+1)220%02-6(22%+1)0%U"2)

+ 8(x-1)3BR%'? , (7.22)
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where B8 is given by (B7)4.

From (7.11)2 we obtain, after a lengthy calculation in which
equations (BZ)Z, (BS)I,S’ (B4)2, (B.5), (6.9), (6.10)1, (6.14),
(7.3)2, (7.5)2, and (7.6)4 are employed,

g, = 3(8,,-80) (7.23)

where

g,, = ala'-28'U) + 28U’ (U"+220%) ,

and (7.24)

= a'%+ 40%2(1+(A2-1)A} + 4a(g'U'-8"U)
+ 168’0 (UU") ' + 8a2Q%((uu')"}2

4R 1a[3(22+1)0%0'2-U"2-22")2- 22202

<+

+

a'U' (U"+2%Q%U) + 8x%%u'2(uu") "}

+

16 (1-1)3B2%u'? .
With (3.20)1, (7.24)1 and (Bl12), equation (7.23) yields

2 —_ L
I 2 g,dE, = -%nz(AQ-l)(l-A)[UU (U'2+22Q2y2) 2
-L ~*2
2
1 (%2
+ 1 I 8,548, - (7.25)

2

We now substitute in (7.10) from (7.11), (7.18), (7.21),
(7.25) and (6.21) to obtain

GIT] = 4£,2,232 .k, (G -G,+G5-G,) (7.26)
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where

¥4 ] -

1 J 2 n 2 v 4

G, = —5—>— [g,,+(-1) g. U += hldg,_ ,

1 32)‘39222 . 22 ;f‘ 11° g2 2
“%2

1
G =
2 ZXZZ

(-1)° [{7A%+1+(2%-1)A}uU' D"
-—-—74%;—- - 7.27)
3 8a 2l (

-4U{U'2(2%+1-K) -Kr%Q%U%}] ,
52=£2

[uu' {u'2+1%Q%u%yy, _, ,
E'2‘_22

(]
1]

- 2 2 2_
Gy, = vx (alb2+a2bl 2ab1b2) ,

where A 1is defined in (6.20) and the a's and b's in (6.16),

(6.17), and (6.18).
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8. Some asymptotic expansions

In this and the following sections, we suppose that the
plate is thin and calculate E[gl for the case when the bifur-
cations is of the flexural type.

It has been shown in [ 3 ] that if the value of n de-
fined by (cf.(3.15))

n Q£2 = nwze/(le) (8.1)

is small, then the critical value of A at which a flexural

- 3 * 3 -
bifurcation can occur is given by

1= 202+ 18k 4« 0(n®) . (8.2)

We now introduce the notation

0
w& ) - w

= Iy|xe1 > alr=1 » W&g) = Wagla=1 etc-,

R

(8.3)

(o) . (o) | =
ko = kgla=1 0 Kag' = Kgglaer (@58°1,2)

and note, from (2.9)1 2 and (2.10)1 that

= 1-2
Il J A

- 3-1 2 1Y+ (1-112
1 3 (Ia-Ja) = A3 (A-1)°{1-(x-1) (A-1)

-3 oo-nky (8.4)

* The integer n 1in (8.1) is the number of half-wavelengths along
the l-direction in the flexural mode under consideration. If the lowest-
order mode is not suppressed by means of some type of passive constraint, no
value of n greater than unity is relevant.

L —— T s . i
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With (8.3) and (8.4), Taylor's theorem yields the following

approximate expressions for W , W ., waBY’ Wogys °

With

W, - wo(lo) . x;l(x-1)2[1-(k-1) + (A-1)2](W§2)+A§W§2))

23 lla 3712a 3 22a
+ 0(r-1)° ,
N (o) DR B I O (0),,2,(0) B
Wog = Wog *33 (A-1)°[1-(A-1)1 (Wy;p*A3W5,8)*0(A 1),

s w0 xmly 112 w(0) 112y (0) 13
Wagy™ Wapyths (=12 (Wiog #ATW; 2 )+0(A-1)7 ,

= w(0) -132
Wogys = Wagys*t OA-1)° .

From (8.3), (3.2)1 2 and (A7)1 we have

(0) - w(0),,24(0) 0)_ 2 N
ko Wy ML ké )-2(w§g)+zx3w§g)+x3w£g)) ’

(o) . 1,.,(0) 2. (0) 4, (0),,64(0)
kg (Wyg2*3A3W 0% AW o0+ A3W555)

(8.5) and (8.6), equations (3.2)1 2 and (A7)1 4 yield
’ »

k, = k£°)+%kglk£°)(A-1)2[1-(A-1)+(A-1)2]+3A§2k§°)(A-l)h
+ 0(A-1)° ,

k, = k§°)+1z;\§1kg°)(A-1)2[1-(A-1)]+0(A-1)h ,

ky = k§°)+4x;1k£°)(x-1)2+0(x-1)3, k,=k{%) + o(r-1)2 .

From (7.8), (B4)2, and (BS5), we obtain with (8.7)

(8.5)

(8.6)

(8.7)

A= AP zal® 2200y 4 33012 1-a-1)) + oa-D)Y

B = 3(0)-%3(0)(A-1) +o0x-12, c=c® 4on-1n,

(8.8)
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where, from (B4)2, (BS5) and (A7)3 s
A =gy, = a0 k),
300 - 8|\, - a8k (%) (a2k{0)y, (8.9)
(0)_ _ 32 0 2, (0 by (0 6., (0)
¢ =Clhar” 31 (0) (W£111+4A3w1112+6k3W£1%2+4A3W1222
3°1
8, (0
* A3W£2%2) -
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9. Asymptotic first-order solution

We define the dimensionless thickness coordinate t by

t = 62/1,2 (9.1)

and write
V(t) = U(E,) . (9.2)

Then, noting from (3.15) and (8.1) that

1d _14d !
RdE, T nar 8-3)

and using the expression (8.8)1 for A(O) , We can rewrice the

differential equation (3.19) as

" 2
1 d'v 2 (o) b, 1 d°V
-{2+2(A-1) + (A-1)%+AYYY » o -) e S
nt att n2 dt
+ {1+2(2-1) + (A-1)%W =0 , (9.4)
and the boundary conditions (3.20) as
2
= 9—% + {1+200-1) + (A-1)2W =0,
n< dt
1 ddy i 482 (0) ook, 1av
3.3 -{3+(A-1)+ (A-1)5(2+A%)) + 0D g < 0 (9.5)
when t =+1 .,

With the asymptotic expression for A-1 given in (8.2),

equation (9.4) can be rewritten as




” v T
39. \
b 2 :
i 4’V 4 2 4 4 13 (0) 1 d°v
Y 2+ 3P+ dnt Beal®)y v oy £ Y
, ;F it 3 A n2 4. |
| 42 524 } |
+{1+§”+Z§ ﬂMn)W 0 (9.6) ]
and the boundary conditions (9.5) can be rewritten as
2
1 4d°V 4 2 524 6
— —— + {l+=zn“"+3=n +0(n )}V =0
n2 at2 3 45 ’
3
LT 3edn?e gt a0 v 00®r L - o (9.7)
n> dt dt '

on t=¢%]1 . It can easily be verified that the solution of

(9.6), with the boundary conditions (9.7), is given by*

V= 1_%n2t2 (1 2 1 u) 2 1 b

n® (75t gt o)+ 000Y) L (9.8) |
We note that to order n6 » V 1s independent of both A3

and the form of the strain-energy function W .

* We employ the normalizing condition V(0) =




"'F":' m——o—
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, 10. Asymptotic second-order solution
| We define V(t) by
Ug,) = -L™MEVE) (10.1)
where t 1is defined by (9.1). Then, with (9.3), (8.2) and
(8.8)1, we can rewrite the differential equation (6.8) as
s 27
1 4d°v 4 2 L 1 d°Vv
—5 “4[2+n" +0(n)] 5 —5
;E dt 3 n2 dt2
+ 16[1+3n% + 0(n*) 1V = 2 g (10.2)
and the boundary conditicns (6.12) as
2— - —
LV and et oIV - 5,
dt
n (10.3)
3_. —
1 d°v _ 82, 44 .26 (0) 6y11 dV _ &
| =3 3—3- 4[3*3’""'9‘” (_5-+A ) *0(n )]ﬁ'a'f °2 s
] n t
; when t =+1 , where
!
|
i = -h r = -2 = -3
,,- F(e) = e 7e(g,) , B (t) = Q77 (E,) , F,(t) = @ 70,(E,) ,
(10.4)

and 0(52) , @1(62) and ¢2(£2) are given by (Bll) and
(6.13).
With (9.1), (8.2), (8.8) and (B5) we obtain from (10.4),

—————

(B11) and (Bl4)
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| - gﬁ = 4an3t(2+A09)) + 0(n%)
' B lter1 T *29“[2+%ﬂ2*'nh(%§ + %A(O)) +om®1, (10.5)
| Tyl pesr = 29"2[1+”2(2*%A(0)) + 0(n™")]

With these expressions introduced on the right-hand sides of
(10.2) and (10.3), it can easily be verified that the solution
of (10.2), subject to the boundary conditions (10.3), is

V= antiden(-2e3t?) « "3 -

A0 - 4B e gt
+ nb0-(Z+ al0ye? o &+ LAk s Leb1u0n®)
(10.6)

where D is a constant which could be evaluated if

the calculations were carried out to a higher order in n .
However, the value of D will not be required for the calculation
of E[g] which is the main object of the present paper.

It is seen from (10.6) that V - and hence, from (10.1),
U - depends on the form of the strain-energy function W only
through A(®) | defined in (8.9);. From (8.6); and (8.9);, we

see that

8(w(°)+zx3w§g)+A3W§g))

A0 ORERO)
A3(wl +A3W2 )

(10.7)

e e e ponspeoa— . . _ N -




11. The asymptotic expression for E[g]

In order to calculate E[@] in the asymptotic case when
22/£1<< 1 , we use the formulae (7.26) and (7.27) and introduce
into the latter the relations (9.1), (9.2), (9.3) and (10.1).

Then, we introduce,in the expressions for G G G and Gh

1’ "2 73

so obtained, the expressions (9.8) and (10.6) for V and V and
systematically neglect terms of higher degree than the fourth in
n .

Calculation of Gl

Following this procedure we obtain from (7.27)1,

i 1 % T
. R A 20° A dv »
G, = D I (g22-+§ﬁ— g, ae* 4h)dt , (11.1)
s2a° 1)
where 811 €55 and h are defined by

4 A -6 ~_ -8

8,7 = & Brp 0

and 811+ 822 and h are defined by equations (7.22), (7.24)2
and (7.8)1. With (9.2), (9.3) and (10.1) and the notation

a=a2,8=a2%,% =2t , &, =0, , (11.3)
we obtain from these equations
2 ~
- a dg dv
by - sich Sy L S
n“ dt n
_K{eﬁ v 42v, 4 (d2V)2 . 2 dv ddy
né 5;5 ;E dt? ;E at dt3




43, !
, + 305032 -E2a2a) (§ }
| n2
| 2 o132
N ~ 1 dl\ A
i 822 ;E(a%)z'*4°2{}+(kg-l)é}+ -—(§! a8 . v-—~)
| R Aot - W ol i
n
+ 43{ [iz(laﬂ)( D)2 - —,;(—) - 2283] (11.4)
R = LS
+ Ba-13sagh?
n
ﬁ=__2___(z l+.<)+_£?‘__1LB( )2 (z,<+.<2)
4(2°-1) nc(A+1)
b
+ Ll_!]i)_ c(a_)
; n
; From (11.3) and the expressions (3.25), (3.7), (B.5) and (7.3), we
i obtain, with (9.2), (9.3) and (10.1),
!_' a = Lﬁ/ﬂ- (dV)z}
n 2 -
| =54y -{1+(A2-1)A}V ,
i n° dt (11.5)
? n A2+1 v, 2 L 208
i K = ( ) (— + A V (V ) ’
; i 1 n2 dt dt T a—
- 2
~=A+1 d°v,2 _,2,2 _ ,,22
From (BS), (8.8)1 and (8.2), we obtain the following
? asymptotic expression for A




A= A(O)(gn +15n ) + O(n )

We now substitute in (11.5) the asymptotic expressions for

(11.6)

V, A and A » given in (9.8), (8.2) and (11.6) respectively,

and obtain the following asymptotic expressions for &, ﬁ,

and Ky i

3 = -1+n2(§-2t2) +nh(f§‘ %th) + 0% ,

o
[}

-2+n2(32;- t2) + nh(zgs--%f\(o) - ¢2 -117th) + 0(n6)
h(16

n>
n

L ne(-%*-4t2) +n -8t2+8th) + O(ns) ,

R>
]

K1

(11.7)

With (9.8), (8.2), (11.6) and (11.7), equations (11.4) yield

€11

8,5 = 4-12(8+24t2) - (32 8L(1.a(0)) 20 g0et)

+0o(n® ,

h = nhA(o)(%‘ %tz-rSth) + 0(n6)

n2(12-3a090y + nda- 32400 4 4(24a(90)e2) 4 0(n®y

(11.8)

Substituting from (11.8) and (8.2) in (11.1) and carrying

out the integration, we obtain the asymptotic expression for G.:

6, = 2} cn?G+ HA() « 2 (JE3-Ba00)) 4 on)).

Calculation of 62

With (9.2), (9.3) and (8.1) the expression (7.27)2 for 62

1t

(11.9)

can be
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rewritten as
G, —1: vy {( +x2n2v2} leay - (11.10)
With the asymptotic expressions (8.2) and (9.8) for A and V
respectively, this yields
L. 1 16 4 6
G2 = -Q (2“2‘5!‘] ) + 0(n ) . (11.11)
Calculation of G3
With (9.2), (9.3) and (10.1) the expression (7.27)3 for
G3 can be rewritten as
G, = ——7—93 [{732e1+ (A2-1)KpvEY 4¥
-4{(A%+1-2) (a-) AZn?v3ND L, . (11.12)
We introduce the asymptotic expressions (9.8), (10.6) and (8.2)
for V, V and A respectively and obtain, with (11.6),
- Qb 1. 2 7 1,(0) 4 .25 . 17 (0)
Gy = 2 -gon® (gt 74A %) + '3 "7 () + 0%y
(11.13)

Calculation of Gh

With (9.1), (9.2) and (9.3), we can rewrite the expressions

(B16) for b and b2 as

1
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2 (1
_ 0 1 .d%v.2 1 dvi2,. 1
b, = ﬁf [;E(—"e' (zr) #(1-700%+3)R
-1
. I(x2-1)K2 - (x-1)3B}]dt ,
(11.14)
2 (1 2
- 0 1,4V 2, 1 dv,2
by = TXI [T(E’E) 2(3") "
-1 n t
-[A2+1+(A2-1)T)A+ (12-1) 2T} 14t ,
where € and d are defined in (B.17). We introduce the
asymptotic expressions for A, V and A given in (8.2), (9.8)
and (11.6) and obtain
1 2
b, = 2b, = -0®(1-2n% 4" G -2 s 0(nf)y . (11.15)

Substituting from (11.15) in (7.27)4 and using (6.20), we obtain

G, = 292" (1-2n2 + n* 32 - 209y + 01, (11.16)
where
v - al+4az-4a (11.17)
4(alaz-a§) :
and a;, a, and a are defined in (6.16). We note that they

depend explicitly on x3 .

In order to simplify our calculations of the asymptotic
expressions for a,, a, and a , we will restrict them to the

3
(8.8) into (6.16), and taking A

case when A, = 1 . Then introducing (8.2), (8.5)1 29 (8.7)1 and
H

3 = 1, we obtain
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a, = 4{lenent@Eedan) 05y,
a, = 4{1'+n (7 ;) (11.18)
st St e A + 0B,
a = 2{1+§cn2+n" 52;+gAO) + 0(n )} ,
where
(0) Wi
A=A d = —T_T—_T_T 11.19
0 |A3=1 o : wl0 +W 0 - ) ( )
1 2 3=l
With (11.18) we obtain from (11.17)
= %z{3-3n2+nh(g7;-§c+16 2 S'Ao) + 0(n )}. (11.20)
Then, introducing (11.20) into (11.16), we have
6, = @3- 302+ n" (A - A, - g2 + 750D * o(n®)} (11.21)

Calculation of G[u] when A_=1

3

We now introduce into the expression (7.26) for E[g] ,

the expressions (11.9), (11.11), (11.13) and (11.21) for

Gy, G

we thus obtain

o G3 and Gh and take A3 = 1., With (8.7)1 and (8.2)

_ 9, .16 32 .6
Glul = 3¢,2,8,K 0 n2(1+ n2 (-3 4 Tag+ o 3EPnron®)

(11.22)
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= 1 (0) - rwl(0) (0)
Ko kl A=1 = [Wl * W2 ]x -1 - (11.23)
3 3
It is instructive to make the substitutions
@=L, =24 + 16 g (1-2w£0)) (11.24
L8 54%**T o o)) ° -24)
2 k k
1 1
in (11.22), which may then be rewritten as
o 42K 2,98 4
Glu] = =——=— [1-n"(F-8) + 0(n")] . , (11.25)
2
If the material is neo-Hookean, § = 0 and equation (11.25)
becomes
6
- £.2.K n
G[a] = 1—330—[1-?}n2+0(n“)] : (11.26)
~ 3L
2
We may compare this result with that obtained in a previous
paper [ 2] in which an analysis similar to that in the present
paper was carried out for a neo-Hookean material with Ko = %
and arbitrary A3 . It was found (see (7.19) in [ 2]) that
2,2 A né
Fra) . ——— 2 1 .2 4
G[u] = 3 [1-%(16+ Jn©+0(n’)] . (11.27)
~ 6.5 3 2413
3

By taking A, =1 in (11.27) and Ko = in (11.26) we see

3

N

that agreement is obtained.
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Appendix A
In this section we shall prove the result expressed by
equation (4.7).

We introduce the notation (cf.(3.3),)
- 4 2\o 2 ,2\3
k = A (-2 )u1’1+ (A3 A5)E (Al)
and the operator «[u,u] defined by
cleli+eT] = e2¢[d] + 2e3«[,T] + e*e[u] . (A2)

With (2.10)2, we obtain

~

N
k[u,u] = u

— A

- +A ~ - +A ) _
a,8%,8 (ul,zuz,l Yy 1%1,2781,1Y,2
Uy QU )
With this notation and equations (4.3) and (3.3)2 3, We
Hd

(A3)

obtain from (2.12), by neglecting terms of higher degree than

the fourth in e ,

i= 2ex (1-2%)a, +e2{k[d] + 2k} + 2e3«[u,T)
+ eh{r[?] + (A§+2A§)E2} ’

: a 9:2F 3 3232 (Ad4)
j 2¢ EA2+ 4e Ekl(l A )ul’1
h— A _2— -

+ € E{Zx[g] + 4A1(1 A )u1,1+ AlE}

Again to order eh , we obtain from (A4)
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i
.f
* 12 = 4e2221-2%)%(@, %+ 4er (1-2%)a ) Ix[a]+2k}
- + e ([P +82, (1-AP)0; («[T,8] +ax[d]keak®} ,
3 _ o.3y3,7.12y 304 3
i i° = 8¢ Al(l A%) (ul,l)
| b, 2 2.2,A 2 A1.oT
+ 12¢ Al(l-k ) (ul,l) {K[E]+2k} ,
t '
o b o N IL I L
! it = 1672, (1-A%) (u) )7, (A5)
ij = 4e3A.a.(1-A2)a, .E + 2¢E{A_c[a]+2A,K
- J 2"1 1,1 oKLY 2
2 2.2 4 2
, + a2 @ %,
2. _ o by 2.0 ,2y2.8 (2%
iy = 8e A2Al(1 A9) (ul,l) E ,
j2 = 451“1\232 .
2
Also, from (2.11) and (2.16) we obtain to order eh R
!
L 3) . -3 . 2. 4 - b
- A R T L I IS A S A (A6)
o
‘ ‘ where
i
; II = l 2 h 6
o Ky = (N 3N o+ 303N o4 A5 W,,5,)
_ 1.2 2 N
I k3p = 7A3(Wyqp*2A5W, 504 A 5,50 (A7)
' K, = (W AW . +extw. el 8w
| b 2811217311127 3 11207231222 A 30000

We now substitute from (4.3) in (2.22), and use the relations

(3.1), (3.2), (3.3), (3.21);,(A2), (A5), to obtain, to order e,

Glu] = G[eli+cq]

= %6, (8] + 22,¢3 [J (g{Pegf3eeg®™rag ac, | (A8)
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where

(3)= A - 2_22/\ -—

&1 2k k[u,ul + AT(1-27)%%k,u, Guy G b,

(3) . L2 2 2,2 =

g5 A (B (202050, (300K, a0k, VEG,

A A )2 A
+ kydy o k[d] + bxl(l-A2)2k3(ul’l)3] ,

() _ — 2. ,,2.52 i

g kl{n[g] + (A3+2A2)E } l
: 2 A = =2
, + AW, {2¢[A]E + 43, (1-A%)EE, | +n E°)
[} ~ 2A A . ™ A

+ k(< [E1)2 + 22, (1-2%)8, (8,1 +k[d]+K) (A9)

+

2 2,20 2= n = =
kp {401 (1-25)%(uy 1)°E + Apc[U]E + 24,KE}

L 2= -~ 2 PN -
3W22A2E2 + 12Ai(1-k2)2k3(ul’l) {c[u] + 2k}

+

2A

+

2 252 A 2
BAT(-A% %k, (@) )%E

+

16A§(1-A2)“kh(ﬁ

4
1,1) .
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Appendix B
We substitute in (5.4) the expressions for ﬁl, 62 and p
given in (3.14) and obtain, with (3.16) and (3.24),
5 2,12 1721 1 L -1=
Fll {kl+kl(x 1) k2}u )‘klu2 5P
-Ay (021 (2350, - (2 -A D)k, * Ak, JE
1 2 2 73772 2721
-£1,- (1), cos2ag, + Xi |,
- _ B o . »
Fel = kl(uz’lﬂul 2) (-1) ¢2151n2951 + Xu2,1 s
F12 = k1( 1, ot ) (-1) ¢1251nZQ£ xul,2 , (B1)
= k(3 Sls g _(e1)D =
Fop = k(U oMy 1) A, £,5-(-1)7¢,,c08208,+ XU, 5
= _ 2 2 2.2
Foo = (03e 8k 150w+ 0525 %k,

- 2_ 42 L -
2(A5-A3)A K,y 2A3A2 2o D
2_ 2y _(12.42
-2y (AF-1){2A5W,- (AZ-A0)k*A K, JE,

PEERY
-f33 -1 ¢33c0329£l ’
where the f's and ¢'s are functions of 52 only defined by

= 2y-1 L)
fll = (41A2Q ) {Zle U

+x§(x2-1)k2[3(A2+1)a2u'2+U"2+A2n“ue+zx292(uu’)’]
+24A§(x2-1)3k3n2u'2} ,
= 2 24y -1 Vot 2 2_ 2~211'2
£,, = (221,02 "Lk 8'U"+202(32-1)k 32202}, (B2)

= _r91202v-1;12y _1.2.,2 1
f33 (2A°0°9) {[A3W2 Z(Az A3)k2+zA2k21]

x [(A2+1) Q20" 2+U"2+220%024 220202 (UU") ']

2
+22202-1)2[k,; -6 05250k 5+ 20,k 5, 1070 %,




and
1, = (411,27 M2k 8'U' +A 2 (A%-1) K, [3(A2+1) 0% "2
-u"2-220M2-222024] + 24At(A2-1)3k3Q2U'2} ,

055 = £5p
933 = '(2*292)-1{[Ang'%(Ag'xg)ke*%Aakell

<[ (12+1)22U' 2-u"2-220%y2-222024]

+ 2xi(x2-1)2[kal-ecxg-xg)k3+2Aek3l]92u'2} ,
b, = (222,03 "k 8'U A2 (A% 1)k 2 %% ("e2%0))
01, = (20,27 K, 8'UNE(A2-1)kU" (U +r%2%0))

We introduce the notation

4A2A293 6A:(A+1)3k3
f = =
¢ El 1’21 * B Kl

and (cf. (3.18))

2
A=Al o (A%-1)k,
A+1 AA3E1

Then, we obtain from (B3)1 2.4.5 (BZ)2 and (3.17)
4 H s

k ..t = A "
= —L (28'U +A[3(3%+1) %" 2-U"2

¢
11 4A)2 92
-220%2-22202,]) + 4(a-1)3Bo'2} ,
b, = --—Ei——- (8'U'+2Ar%02U" 2)
22 zxzxznz

53.

(B3)

(B4)

(BS)

(B6)
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- {B'U+AU' (U"+2r2%Q?
¢12-m3+ ( AT},
' = [U"2-11+(1%-1)A}0%0" 2+ D%0%(u'240%02))"
We note from (3.17), (3.19) and (3.25), with the notation
(B5), the relations
a=UU"-U'2, o' =uu"-u'u",
o" = 02{22+1+(12-1)K} (a+U'2) - (U"2+220%y2)
_ (B7)
g = va_{1+()\2_1)K}Q2U , B'=U""{14‘(>\2'1)A}92U' ,
" = 1202 (U"-2%U)
With these relations, equations (B6)2 3 yield
9
' kl "2 2 2 T a211'2 42 40240
¢22 = —5T% [U S+{A°-1+(3A°+1)A}Q°U “-A°Q U] |,
4220
2
k
' — 1 re [l 25211y _3 2 4.2
+ AU"2-(1-2)0%U'%)}
We now substitute from (B6)1 and (B8)2 in the expression
(6.9) for q and use the relations (B7) to obtain
a4 = g~ [(32-3+(a2+3)K10%a- (1-4R)U"2
2
+ (22+3-(22+9)A-8(r-1)3B}q%u"'?2
- (3-280)220%02-2 (1-R)u' U™ +2 (1+K) A 20200"] . (B9)

From (3.19) and (BS) it follows that




2(U'U

Then, from

) = ()24 (22414 (22-1)A10%0" 2220 2" .

(B9), (B10), (B8)1, (B6)4 and (B4)1 we obtain the

following expression for ¢ defined by (6.9):

¢ = PEBOZ-1) + (F+1)Ae%

-{5(22+1)A- (12-1)A%+8(r-1)3B}R%'2

+ SAU"2er20%2) | (B11)

.20}, (B5) and (B7) we obtain

_ (U' 2+)\292U2) ,
{322+1+(22-1)A}%UU"' , on £, =%, . (B12)

222%y" .

With these relations and (3.20), we obtain from (B6) and (B9)

0,,(¢L))

q

Ak, ky, - 5
= —x-a— uu , ¢22(i£2) = -'x; (1+A)U ’
2 - '
= -3 [2{2(02-1)+4R- (A2-1)A%+4 (a-1)3BJU "2 (B13)
2

+ 22{422-(22-1)A10%U3]

Equations (B12) and (B13) yield the following expressions for

°1 and ¢2

defined in (6.13):
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=% - '
0, = 208275 (7A2e1+ (A2-1)EM0U"
0, = 202272 {222 -1+2(A%+1)R-3 (32 -1)A®
+ 2(0-1)3B10'2- NP (A2-1)Re%0?) . (B14)
From (B7)S and (3.19) we readily obtain, with (BS), the
identities
’4 2 "e T A2y ! U
2242 = [u' (u"+2%%0) -u{u [zx +1+(A%-1)A19%0 "))
-2222wu"y T -u"?-(a2+1+ (A%-1)A10%' 2 (B15)
A22(uu') "+a'U = (U (U"+22Q%0) 1" -U"2- {1+ (A%-1)A}%u "2
We now substitute from (BZ)1 2.3 in (6.18) and (6.17)2
’ ]
and use (3.20), (B4)2, (B5) and (B15) to obtain
1 by o 21201 1320y T
b, = - f [U"2+Q%U'2({1-2(A°+3)A
1 2 z
2220
2 -2,
. %(A2~1)K2—(x-1)33}]d62 ,
(B16)
L,
b, = -—2= f 2 u"%+%u'?1
2
AR
2 -2,
- (21 02 1)TIA (A2 2T 14,
where T and d are defined by
3
A-A3 _
T - EL (AQW +7A2k21) - 3 ;5—% A,
l -
A-23 (B17)

1 2 3
d XT;FI (k21 2A2k31) ZA (k+1)3 B,

with kl and k21 defined in (3.2), k3 in (A7), and A2 in (3.3).
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